



















	Getting Started
	NodeWorx
	SiteWorx
	Clustering
	Frequently Asked Questions
	Troubleshooting
	User Guide
	API	NodeWorx API Controllers
	SiteWorx API Controllers
	API Response Codes



	Changelog
	Security Reports
	Maintenance Windows
	Deprecation Plan
	Roadmap



















	 »
	API
	
 View page source










API¶


Introduction¶

The InterWorx API is a fantastic resource for developers to easily and
rapidly achieve integration of InterWorx into their own products. The
InterWorx API also allows the technically savvy webhost to automate
custom tasks that might otherwise be too difficult or cumbersome to
perform manually. It allows complete and total control over almost every
aspect that a user would have access to if they were performing the
actions themselves through the web interface. It is capable of feeding
the same information that a user would see inside the control panel to
your own application. The main reason that the API is so robust is that
the NodeWorx and SiteWorx web interfaces are API clients themselves -
InterWorx operates as an abstracted application model behind the API.
That means all new features are added to the API first before they are
even accessible in the web interface and that means you will rarely have
to wait for something that you can do in the interface to become
available in the API.

The API is based on open standards known collectively as “Web Services,”
which include XMLRPC, SOAP, and the Web Services Definition Language
(WSDL). These standards are supported by a wide range of development
tools on a variety of platforms. Since the API requests and responses in
the InterWorx API follow current standards, any programming language
with the appropriate library support can be used.


Note

SOAP WSDL Point of Contact: https://%%SERVERNAME%%:2443/soap?wsdl
XMLRPC Point of Contact: https://%%SERVERNAME%%:2443/xmlrpc
Where %%SERVERNAME%% is the IP or Hostname of the InterWorx server.




The Two API’s¶

The API is divided into 2 parts just like panel. There is the NodeWorx
API which allows you to perform server administration tasks and manage
resellers or SiteWorx accounts just like you would in NodeWorx and
there’s also a SiteWorx API which pertains to a specific SiteWorx
acccount and allows you to perform tasks related to that SiteWorx
account. For example to edit a SiteWorx account’s usage quota you’d use
the NodeWorx API but to add a new e-mail account you’d use the SiteWorx
API.




Authentication¶

There are three ways to authenticate with the API. The easiest way is to
use the e-mail and password of a NodeWorx user and you will be able to
perform the actions that the user is permitted to make. You can also use
the reseller’s NodeWorx API key. The reseller system is explained in
more detail in the Reseller System Guide. This is often preferred
because often users lose or change their passwords which would break
integration. The API key, on the other hand, will only change if perhaps
it is compromised or the NodeWorx reseller wants to discontinue allowing
access to a 3rd party application. Lastly, you can use the session ID
which might be preferable in instances where the user clicks a button in
a plugin and their session ID is passed to your application to provide
temporary access to their panel’s functions.

The one thing to remember, though, is when using the SiteWorx API, you
must specify a domain to work on or the API won’t know which SiteWorx
account you are referring to.






Using the API¶

The API requires four parts.

	Authentication: See the section above regarding this information.

	Controller: The API controller the call should be directed to. A list of
NodeWorx and SiteWorx controllers can be found on their respective pages, linked
at the bottom of this document. These should be expressed just as they are shown
on those pages. For example /nodeworx/dns or /siteworx/dns.

	Action: The action to complete. This is usually a specific task related to
the controller. For example: adding an email box uses the add action in
the controller /siteworx/email/box.

	Input Parameters: An array of parameters necessary to complete the action.
Some actions to multiple fields (for example: adding a mailbox would require
a username, password, and confirm_password as a minimum) and
others require no input parameters.


Warning

Even when the action being called requires no parameters, it is still
necessary to define the input parameter itself. Simply initialize the
parameter as an empty array.







PHP Example Usage¶

The first thing we need to worry about is creating our authentication
array object. As stated in the overview, we have 3 options: Username and
Password combo, API key, and session ID.


Authenticating via Username and Password¶

For the username and password, we just need create an associative array
with email and password as keys for a NodeWorx API login.

$key = [
    'email'   => '[email protected]',
    'password' => 'nodeworxpass'
];





Alternatively if we are authenticating with the SiteWorx API, we will
need to specify a domain.

$key = [
    'email'    => '[email protected]',
    'password' => 'siteworxpass',
    'domain'   => 'example.com'
];





This is one of the more basic ways to log in. The caveat is that if the
user’s password is changed, your code will stop being able to
authenticate with the API.




Authenticating via an API key¶

Each reseller account can create an API key as well, and use that to
login, rather than use the e-mail/password combination.

NodeWorx API Key Authentication:

$key =
'-----BEGIN INTERWORX API KEY-----
...
-----END INTERWORX API KEY-----';





SiteWorx API Key Authentication:

$key = [
    'domain' => %%YOURDOMAIN%%,
    'apikey' => '-----BEGIN INTERWORX API KEY-----.....'
];








Examples API call using XMLRPC and SOAP, in PHP¶

$key = [
    'email'    => '[email protected]',
    'password' => 'nodeworxpass'
];

$api_controller = '/nodeworx/users';
$action         = 'add';

$input = [
    'nickname'         => 'Example User',
    'email'            => '[email protected]',
    'language'         => 'en-us',
    'theme'            => 'interworx',
    'password'         => 'pass',
    'confirm_password' => 'pass',
    'perms'            => ['LOGIN', 'SWACCOUNTS']
];

$params = [
    'apikey'    => $key,
    'ctrl_name' => $api_controller,
    'action'    => $action,
    'input'     => $input
];





Connect using XMLRPC via the Laminas Framework:

$client = new Laminas\XmlRpc\Client( 'https://%%SERVERNAME%%:2443/xmlrpc' );
$result = $client->call( 'iworx.route', $params );





Connect using SOAP (after installing the php-soap package):

$client = new SoapClient( 'https://%%SERVERNAME%%:2443/soap?wsdl' );
$result = $client->route( $key, $api_controller, $action, $input );










Perl Example Usage¶

#!/usr/bin/perl -w

#You must install the RPC::XML perl module.
require RPC::XML;
require RPC::XML::Client;

# This is the connection to the XMLRPC service to communicate with the API
$cli = RPC::XML::Client->new('https://%%SERVERNAME%%:2443/xmlrpc');

#This is the API key stuct, pass authentication information here.
$apikey = RPC::XML::struct->new({
    'email' =>  RPC::XML::string->new('[email protected]'),
    'password' => RPC::XML::string->new('yourpassword'),
    'domain' =>RPC::XML::string->new('%%YOURDOMAIN%%')
                             });

#This is the API controller
$ctrl_name = RPC::XML::string->new('/siteworx/email/alias');

#This is the API Action
$action = RPC::XML::string->new('add');

#This is how you pass the input, in a struct.
$input = RPC::XML::struct->new({
    'username' =>  RPC::XML::string->new('example'),
    'forwardsto' => RPC::XML::string->new('[email protected]')
                            });

#This generates a pointer to an RPC::XML::struct object, which contains
#  the API's output
#Be aware that even actions that require no input still require the parameter
#Just pass in an empty array
my $resp = $cli->send_request('iworx.route',
                           $apikey,
                           $ctrl_name,
                           $action,
                           $input);

#value() gives a pointer to a native PERL hash table. This will contain
#  the "status" and "payload" keys if the XMLRPC communication with the
#  API was successful. If there was a problem and you sent bad data to
#  the API, they keys will be "faultString" and "faultCode". You may
#  want to do some error checking here.
my $results = $resp->value();

#This assumes that we communicated properly with the API, and got a valid
#response from it.
#We check the key "status". If it's 0, the add alias worked out!
if ($results->{status} == 0){
    print "Success!\n";

} else {
    print "Failure!\n";
}

#This is here to print out the payload. The payload can be delivered in an
#array or as a string, depending which controller/action you are using.
if (ref($results->{payload}) eq 'ARRAY') {
    print "Payload is an array.\n";
    my @payload = @{$results->{payload}};
    foreach (@payload)
    {
     my @key = @{$_};
     print "@key" . "\n";
    }
} else {
    print "Payload is a string.\n";
    print $results->{payload};
}








Golang Example Usage¶

package main

import (
     "fmt"
     "github.com/kolo/xmlrpc"
)

type RouteResponse struct {
     ReplyCode interface{} `xmlrpc:"reply_code"`
     Payload   interface{} `xmlrpc:"payload"`
     Status    interface{} `xmlrpc:"status"`
}

func main() {
     url := "https://%%YOURSERVERNAME%%:2443/xmlrpc"

     key := `-----BEGIN INTERWORX API KEY-----
     -----END INTERWORX API KEY-----`

     apiController := "/nodeworx/users"
     action := "add"

     callInput := map[string]any{}

     callInput["nickname"] = "Example User"
     callInput["email"] = "[email protected]"
     callInput["language"] = "en-us"
     callInput["theme"] = "interworx"
     callInput["password"] = "pass"
     callInput["confirm_password"] = "pass"

     var perms []string
     perms = append(perms, "LOGIN")
     perms = append(perms, "SWACCOUNTS")

     callInput["perms"] = perms

     params := []any{
             key,
             apiController,
             action,
             callInput,
     }

     client, err := xmlrpc.NewClient(url, nil)
     if err != nil {
             fmt.Println("Error creating XML-RPC client:", err)
             return
     }

     var response RouteResponse
     err = client.Call("iworx.route", params, &response)
     if err != nil {
             fmt.Println("Error in XML-RPC call:", err)
             return
     }
}








Python Example Usage¶

import xmlrpc.client

key = """-----BEGIN INTERWORX API KEY-----
    -----END INTERWORX API KEY-----"""

controller = "/nodeworx/users"
action = "add"
input = {
    'nickname': 'Example User',
    'email': '[email protected]',
    'language': 'en-us',
    'theme': 'interworx',
    'password': 'pass',
    'confirm_password': 'pass',
    'perms': ['LOGIN', 'SWACCOUNTS']
}

client = xmlrpc.client.ServerProxy('https://%%SERVERNAME%%:2443/xmlrpc')
response = client.iworx.route(key, controller, action, input)






	NodeWorx API Controllers
	SiteWorx API Controllers
	API Response Codes
















Next 
 Previous






© Copyright 2020, InterWorx Team














 Other Versions
v: current



	Branches
	6.x
	7.0
	7.1
	7.2
	7.3
	7.4
	7.5
	7.6
	7.7
	7.8
	7.9
	7.10
	7.11
	7.12
	7.13
	current (7.13)







